Archive for June, 2010

Classifying objects by complexity

Posted in Algorithmic information theory, Complexity, Computer Science, New Ideas on June 2nd, 2010 by Hector Zenil – Be the first to comment

I have coauthored, with Jean-Paul Delahaye and Cedric Gaucherel, and made available today on arXiv a new paper entitled Image information content characterization and classification by physical complexity. In the paper we present a method for estimating the complexity of an image based on the concept of Bennett’s┬álogical depth. Unlike the application of the concept of algorithmic complexity by itself, the addition of the concept of logical depth results in a characterization of objects by organizational (physical) complexity. We use this measure to classify images by their information content. The method provides a means for evaluating and classifying objects by way of their visual representations.

The method described in the paper ranks images based on their decompression times and the classification corresponds to the intuitive ranking resulting from a visual inspection, with things like microprocessors, human faces, cities, engines and fractals figuring at the top as the most complex objects; and random-looking images, which ranked high by algorithmic complexity, were ranked low according to the logical depth expectation, classified next to  trivial images such as the uniformly colored, indicating the characteristic feature of the measure of logical depth. A gradation of different complexities were found in the groups between, gradually increasing in complexity from bottom to top.

significant different groups

Complexity classification of images, from more complex to less complex(group descriptions on the right are followed by the average decompression times as approximations to Bennett's logical depth)

Along the paper we show that:

  • The concept of logical depth can be implemented as a feasible and applicable method to approach a real-world problem.
  • After studying several cases and tested several compression algorithms, the method described in this paper has shown to work and to be of use for identifying and classifying images by their apparent physical complexity.
  • The procedure described constitutes an unsupervised method for evaluating the information content of an image by physical complexity.
  • As the theory predicted, logical depth yields a reasonable measure of complexity that is different from the measure obtained by considering algorithmic complexity alone, while being in accordance with one’s intuitive expectations of greater and lesser complexity.
  • The paper is available here.