### Seth Lloyd’s quantum universe view

Wednesday, November 22nd, 2006In an exchange of emails, Seth Lloyd and I discussed the topic I wrote about some posts ago. Here is some of it.

According to Lloyd, there is a perfectly good definition of a quantum Turing machine (basically, a Turing machine with qubits and extra instructions to put those qubits in superposition, as above). A universal quantum computer is a physical system that can be programmed (i.e., whose state can be prepared) to simulate any quantum Turing machine. The laws of physics support universal quantum computation in a straightforward way, which is why my colleagues and I can build quantum computers. So the universe is at least as powerful as a universal quantum computer. Conversely, he says, a number of years ago he proved that quantum computers could simulate any quantum system precisely, including one such as the universe that abides by the standard model. Accordingly, the universe is no more computationally powerful than a quantum computer.

The chain of reasoning, to jump to the quantum computer universe view, seems to be 1 and 2 implies 3 where 1, 2 premises and the conclusion 3 are:

1 the universe is completely describable by quantum mechanics

2 standard quantum computing completely captures quantum mechanics

3 therefore the universe is a quantum computer.

Seth Lloyd claims to have proved the connection between 1 and 2, which probably puts the standard (or some standard) theory of quantum mechanics and the standard quantum computing model in an isomorphic relation with each other.

Lloyd’s thesis adds to the conception of the Universe as a Turing computer an important and remarkable claim (albeit one that depends on the conception of the quantum computer), viz. that the Universe is not only Turing computable, but because it is constituted by quantum particles which behave according to quantum mechanics, it is a quantum computer.

In the end, the rigid definition of qubit together with the versatility of possible interpretations of quantum mechanics allows, makes difficult to establish the boundaries of the claim that the universe is a quantum computer. If one does assume that it is a standard quantum computer in the sense of the definition of a qubit then a description of the universe in these terms assumes that quantum particles encode only a finite amount of information as it does the qubit, and that the qubit can be used for a full description of the world.

Quantum computation may have, however, another property that may make it more powerful than Turing machines as Cristian Calude et al. have suggested. That is the production of indeterministic randomness for free. Nevertheless, no interpretation of quantum mechanics rules out the possibility of deterministic randomness even at the quantum level. Some colleagues, however, have some interesting results establishing that hidden variables theories may require many more resources in memory to keep up with known quantum phenomena. In other words hidden variable theories are more expensive to assume, and memory needed to simulate what happens in the quantum world grows as bad as it could be for certain deterministic machines. But still, that does not rule out other possibilities, not even the hidden variables theories, even if not efficient in traditional terms.

This is important because this means one does not actually need ‘true’ randomness, the kind of randomness assumed in quantum mechanics. So one does not really need quantum mechanics to explain the complexity of the world or to underly reality to explain it, one does require, however, computation, at least in this informational worldview. Unlike Lloyd and Deutsch, it is information that we think may explain some quantum phenomena and not quantum mechanics what explains computation (neither the structures in the world and how it seems to algorithmically unfold), so we put computation at the lowest level underlying physical reality.

Lloyd’s thesis adds to the conception of the Universe as a Turing computer an important and remarkable claim (albeit one that depends on the conception of the quantum computer), viz. that the Universe is not only Turing computable, but because it is constituted by quantum particles which behave according to quantum mechanics, it is a quantum computer computing its future state from its current one. The better we understand and master such theories, the better prepared we would be to hack the universe in order to perform the kind of computations–quantum computations–we would like to perform.

I would agree with Rudy Rucker too as to why Seth Lloyd assigns such an important role to quantum mechanics in this story. Rudy Rucker basically says that being a subscriber to quantum mechanics, Lloyd doesn’t give enough consideration to the possibility of deterministic computations. Lloyd writes, “Without the laws of quantum mechanics, the universe would still be featureless and bare.” However, though I am one among many (including Stephen Wolfram) who agree that it is unlikely that the universe is a cellular automaton, simply because cellular automata are unable to reproduce quantum behavior from empirical data (but note that Petri and Wolfram himself attempt explanations of quantum processes based on nets), there’s absolutely no need to rush headlong into quantum mechanics. If you look at computer simulations of physical systems, they don’t use quantum mechanics as a randomizer, and they seem to be able to produce enough variations to feed a computational universe. Non-deterministic randomness is not neccesary; pseudorandomness or unpredictable computation seem to be enough.